Disease Control


A pastor and his dog, Yabello, Ethiopia (photo credit: ILRI/Camille Hanotte).

World Zoonoses Day is commemorated on 6 July every year to mark the day in 1885 when Louis Pasteur successfully administered the first vaccine against rabies, a deadly zoonotic disease. The day is also an occasion to raise awareness of the risk of zoonoses, infectious diseases that can be spread between animals and people.

On this year’s World Zoonoses Day, we highlight a new research study published in PLOS Neglected Tropical Diseases (July 2020) that reports on the development, implementation and effectiveness of grassroots mass dog vaccination campaigns against rabies conducted in 2015, 2016 and 2017 in Laikipia County, Kenya.

According to the World Health Organization, rabies kills tens of thousands of people every year, mainly in Asia and Africa. Globally, rabies causes an estimated cost of US$ 8.6 billion per year. Dog bites are responsible for 99% of all cases of human rabies. Therefore, vaccinating dogs is the most cost-effective way to prevent rabies in people.

The research study found that while grassroots volunteer-based dog vaccination campaigns against rabies can be useful, these efforts need to be supported at a larger scale by county and national governments for a more sustainable approach towards eradicating the disease. Below is the author summary.

“Given the importance of mass vaccinations of domestic dogs towards eliminating human rabies in Africa and the site-specific challenges facing such campaigns, additional studies on the development and implementation of such efforts are needed.

One mechanism of mass vaccination lies in grassroots efforts that often begin at a very local scale and either develop into larger campaigns, remain local, or cease to persist past several years once interest and funding is exhausted.

Here, we discuss the development of a grassroots campaign in Laikipia County, Kenya from its local inception to its development into a county-wide rabies elimination effort.

Our results highlight challenges associated with achieving the targeted 70% coverage rate, including a need for consistent and systematic demographic monitoring of dog populations, limitations of the central point method, and logistical and financial challenges facing a volunteer-based effort.

Serious political commitment from both the local and national governments are necessary to take the budget beyond what a crowdfunded campaign can raise, including availability and access to quality dog rabies vaccines.

Without such outside support and substantial time to grow, grassroots campaigns might be better relegated to raising awareness and vaccinating dogs in small communities to protect those communities directly, without contributing to the broader ecosystem-wide transmission-stopping aim often sought by government human health and veterinary organizations.”

Citation

Ferguson, A.W., Muloi, D., Ngatia, D.K., Kiongo, W., Kimuyu, D.M., Webala, P.W., Olum, M.O., Muturi, M., Thumbi, S.M., Woodroffe, R., Murugi, L., Fèvre, E.M., Murray, S. and Martins, D.J. 2020. Volunteer based approach to dog vaccination campaigns to eliminate human rabies: Lessons from Laikipia County, Kenya. PLOS Neglected Tropical Diseases 14(7): e0008260.

Pastoralism

A gender-inclusive approach to community livestock vaccination can help address the different barriers faced by men and women farmers and may increase the uptake of livestock vaccines

Scientists at the International Livestock Research Institute (ILRI) recently published a study on the uptake of the Rift Valley fever vaccine in Kenya and Uganda, incorporating gender in their analysis to better understand the different barriers that men and women farmers face in adopting and using livestock vaccines.

The barriers include the cost of vaccines, long distances to vaccination points, lack of information on vaccination campaigns and decision-making processes at the household level. Understanding these barriers can help veterinary workers design more effective community livestock vaccination programs of benefit to both men and women farmers.

‘Conducting gender analysis on livestock vaccine interventions can enable implementers to identify generic and gender-specific needs of their target beneficiaries’, says Edna Mutua, the lead author of the study and gender consultant at ILRI.

‘This will allow the use of the findings to inform the design and delivery of vaccination interventions to increase efficiency and uptake’, she adds.

Rift Valley fever is a viral, mosquito-borne zoonotic disease that affects cattle, sheep, goats and camels. It causes abortions in livestock and flu-like illness in humans. People can get infected through contact with secretions or tissue of infected animals.

Rift Valley fever is endemic in East Africa and its impacts are significant. An outbreak of the disease in Kenya in 2006–07 caused 150 human deaths and led to losses of USD 32 million from livestock deaths, reduced animal productivity and trade bans on livestock and livestock products.

Vaccination of livestock is currently the most effective measure to control the disease. Previous research on Rift Valley fever vaccines have tended to focus on the production, safety and efficacy of the vaccines. Very few studies have been carried out on the uptake and adoption of livestock vaccines and most of these did not include gender in the study design and analysis but treated male and female livestock farmers as a homogeneous group.

This new ILRI-led study, published in the journal Vaccines (August 2019), provides useful insights into how prevailing gender dynamics in communities such as the division of roles and responsibilities in farmers’ households can influence the uptake and adoption of livestock vaccines.

Uptake was defined as the process the farmers take from when they receive livestock vaccination information to consenting to have their animals vaccinated and presenting the animals for vaccination. Adoption was defined as the continuous use of the vaccine when needed, even without the intervention of veterinary departments.

The study was carried out in Kwale and Murang’a counties in Kenya and Arua and Ibanda districts in Uganda. Data were collected through 58 focus group discussions (30 in Kenya and 28 in Uganda), with 8–12 discussants per group, selected based on whether or not livestock were vaccinated during recent outbreaks of Rift Valley fever.

To incorporate gender into the study design, in each country, half of the focus groups comprised men only and the other half women only. This gender disaggregation enabled the research team to collect data from the different gender groups across all four study locations.

The researchers found that men and women farmers faced different barriers in accessing and using livestock vaccines and that these constraints were influenced by socio-cultural and economic contexts and location.

For all focus groups across the four locations, the farmers ranked the top three barriers to the uptake of livestock vaccines as the cost of vaccines, limited access to information on vaccination and the side effects of the vaccines. However, including the gender and locational differences in the analysis brought forth a clearer picture of which group was most affected by which constraint.

Women in one region, for example, cited the cost of vaccines as the key challenge while women in another cited the limited information available on vaccination campaigns. In one region, the cultural dynamics around livestock ownership were paramount; in another, the long distances the women had to walk their animals to access the vaccination points was key.

The general lesson, however, was the same: ‘Provision of livestock vaccines by veterinary departments does not always guarantee uptake by men and women farmers’, lead author Edna Mutua notes.

Mutua is optimistic that veterinary authorities in Kenya and Uganda will use the research findings to design more effective community vaccination campaigns to prevent and control Rift Valley fever.

‘My hope is that this study serves as an eye-opener to veterinary departments in Kenya and Uganda on the need to integrate gender analysis into their livestock vaccine programs’, she says. ‘Optimizing vaccine uptake requires us to have a better understanding of the local contexts and constraints within which male and female farmers operate’.

This article by Tezira Lore was first published in the ILRI 2019 Annual Report.

Cows walk along an irrigation canal in Niolo, Mali (photo credit: ILRI/Stevie Mann).

As part of a special COVID-19 series by the International Food Policy Research Institute (IFPRI), Bernard Bett and Delia Randolph of the International Livestock Research Institute (ILRI) and John McDermott of IFPRI write on the growing risk in Africa of pathogens that spread from animals to people and how we can learn from past epidemics to improve preparedness and response.

In their article, the scientists discuss the evolving patterns of emergence and spread of zoonotic pathogens, factors that might influence the spread of emerging zoonotic pathogens and the opportunities for controlling emerging infectious diseases in Africa. 

They write: “The record thus far on COVID-19 and on past disease outbreaks shows that early, effective and sustained response is essential to winning the battle over these diseases. Innovative use of information and communication tools and platforms and engagement of local communities are crucial to improved disease surveillance and effective response. Building these systems requires demand from the public and commitment from policymakers and investors.” 

Read the full article, Africa’s growing risk of diseases that spread from animals to people, originally posted on the IFPRI website.

Bernard Bett is a senior scientist with ILRI’s Animal and Human Health program, Delia Randolph is the co-leader of ILRI’s Animal and Human Health program and John McDermott is the director of the CGIAR Research Program on Agriculture for Nutrition and Health. The analysis and opinions expressed in the article are of the authors alone.

Crop-livestock systems in Vietnam (photo credit: ILRI/Hung Nguyen-Viet).

Dengue fever is a mosquito-borne viral disease that commonly occurs in warm, tropical climates. It is characterized by high fever and flu-like symptoms that can last for up to one week. In a small proportion of cases, severe dengue may occur, leading to bleeding and low blood pressure. There is no specific treatment for infection but medication can be taken to control symptoms.

Climate change and rapid unplanned urbanization are among the factors that have brought people into more frequent contact with the vectors, thus contributing to further spread of disease.

According to the World Health Organization, the global incidence of dengue has risen dramatically in recent decades, with an estimated 390 million dengue infections annually.

Vietnam is one of at least 100 countries where the disease is now endemic. Dengue infection in Vietnam is unstable but peaks from June to October annually.

As part of efforts to curb the spread of dengue in Vietnam, research efforts are being undertaken to develop tools that will enable timely detection and control of the disease. One such research study recently examined seasonal trends of dengue in Vietnam and used the data to develop a statistical model to forecast the incidence of the disease.

The study, published in PLOS ONE (27 Nov 2019), was carried out by a team of researchers from the International Livestock Research Institute and Vietnamese partners from Hanoi University of Public Health, the Institute of Meteorology, Hydrology and Climate Change, the Ministry of Health and the National Institute of Hygiene and Epidemiology.

To develop the statistical risk forecasting model, the researchers used dengue surveillance data that had been collected by health centres in Vietnam’s 63 provinces between 2001 and 2012. In addition, they obtained monthly meteorological data from the Institute of Meteorology and Hydrology and Climate Change. Land cover data were obtained from the Moderate Resolution Imaging Spectroradiometer website of the United States National Aeronautics and Space Administration.

The data were also used to develop risk maps of dengue incidence showing the distribution of the incidence of infection in the wet and dry seasons. The researchers are optimistic that with these new risk-based forecasting tools, policymakers and planners in Vietnam will be better able to predict dengue incidence in the country and thus respond in a timely manner to effectively control the disease.

Citation
Bett, B., Grace, D., Hu Suk Lee, Lindahl, J., Hung Nguyen-Viet, Phuc Pham-Duc, Nguyen Huu Quyen, Tran Anh Tu, Tran Dac Phu, Dang Quang Tan and Vu Sinh Nam. 2019. Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk. PLOS ONE 14(11): e0224353.

Infographic on antibiotic resistance: what the agriculture sector can do (credit: World Health Organization).

Each November, the World Antibiotic Awareness Week is commemorated to raise global awareness of antibiotic resistance and to encourage rational use of antibiotics to avoid further emergence and spread of antibiotic resistance.

In collaboration with national, regional and international partners, scientists at the International Livestock Research Institute (ILRI) carry out research on antimicrobial resistance at the human–livestock interface. In recognition of World Antibiotic Awareness Week 2019, we highlight some of our recent research outputs on antimicrobial resistance.

For more information, contact Arshnee Moodley (a.moodley@cgiar.org), antimicrobial resistance team leader at ILRI, or visit the website of the ILRI-hosted CGIAR Antimicrobial Resistance Hub.

A traceability system in the smallholder pig value chain in Kenya could help address challenges related to production, diseases, markets, pork safety and public health, according to a new study published by scientists from the International Livestock Research Institute (ILRI).

Currently, Kenya does not have an operational livestock traceability system. Although a few systems have been piloted, these have only focused on the beef value chain and mostly in pastoralist areas. The smallholder pig value chain is suitable for the implementation of a traceability system as farmers usually keep a few pigs at a time and rely on a short marketing chain that is less complex.

The study, published in Tropical Animal Health and Production (16 Sep 2019), was based on a review of literature on pork traceability as well as on pig production in Kenya, with a focus on smallholder pig systems in western Kenya. Combined with the authors’ research experience in the region, the findings were used to inform the design of a traceability system for the smallholder pig value chain. 

Unique identification of animals is important for traceability. However, the review found that locally raised pigs were rarely identified. Farmers need to be made aware of the importance of identifying animals and recording their movements and how this can improve access to markets.

The study explains how a traceability system could support the surveillance of two important pig diseases in the region: African swine fever and porcine cysticercosis.

An effective traceability system could also enable the withdrawal of unsafe pork from the market, thereby helping to ensure the quality and safety of pork sold in local markets.

“Since meat inspection in the country has now been taken up by the county governments, we see traceability as an option that counties, in partnership with the private sector, could use to market themselves as producers of ‘safe and traceable’ pork”, the authors say. 

Starting with organized systems like commercial producer and trader groups, the concept can be piloted in the field to assess its practical application, paving the way for a national traceability system in line with the guidelines of the World Organisation for Animal Health. 

The authors of the study note, however, that implementing traceability as a tool towards improved animal health and food safety would require the participation of all stakeholders in the value chain. Therefore, appropriate incentives would need to be explored to ensure widespread adoption of the intervention.

Citation

Mutua, F., Lindahl, J. and Randolph, D. 2019. Possibilities of establishing a smallholder pig identification and traceability system in Kenya. Tropical Animal Health and Production. https://doi.org/10.1007/s11250-019-02077-9 

The design of strategies for uptake of livestock vaccines by communities in East Africa should take into account that male and female farmers face different barriers in the uptake of the vaccines, a new research study says.

These barriers include the cost of the vaccines, distances to vaccination points, access to information on vaccination campaigns and decision-making processes at household level. Some constraints affect both men and women while others affect one gender group only, based on prevailing gender norms and division of labour.

The study, published in the journal Vaccines (8 Aug 2019), was undertaken by a team of scientists from the International Livestock Research Institute, Uganda’s Ministry of Agriculture, Animal Industry and Fisheries and the United States Agency for International Development Office of U.S. Foreign Disaster Assistance.

The work was carried out in purposively selected sites, namely, Kwale and Murang’a counties in Kenya and Arua and Ibanda districts in Uganda. The sites in Kenya were selected because livestock there had recently been vaccinated against Rift Valley fever while the sites in Uganda were chosen because they had experienced recent outbreaks of the disease but no vaccination was carried out. Data were collected through 58 focus group discussions (30 in Kenya and 28 in Uganda), with 8–12 discussants per group.

The researchers found that women in Kwale experienced more difficulties than their male counterparts in accessing information on vaccination campaigns while women in Ibanda had limited decision-making capacity over the management and control of livestock diseases because of culturally defined livestock ownership patterns. 

The cost of vaccines was a greater barrier for men than for women because the role of managing and controlling livestock diseases in these communities was culturally ascribed to men.

To be effective, therefore, livestock vaccination campaigns need to consider the socio-cultural gender dynamics that exist at household and community level. It is not enough to merely provide vaccines to the community during mass campaigns.

“Availability of vaccines does not guarantee uptake at community level due to social, spatial, economic and vaccine safety and efficacy barriers faced by men and women farmers,” the researchers note.

They add, “Vaccine uptake is a complex process which requires buy-in from men and women farmers, veterinary departments, county/district governments, national governments and vaccine producers”.

Citation

Mutua, E., Haan, N. de, Tumusiime, D., Jost, C. and Bett, B. 2019. A qualitative study on gendered barriers to livestock vaccine uptake in Kenya and Uganda and their implications on Rift Valley fever control. Vaccines 7(3): 86.

Pipetting in ILRI's biosciences laboratories

Pipetting in ILRI’s biosciences laboratories (photo credit: ILRI/David White).

The scourge of infectious diseases in Africa was the subject of a recent symposium co-hosted by the Academy of Science of South Africa, the Uganda National Academy of Sciences and the German National Academy of Sciences (Leopoldina) in Durban, South Africa on 12–13 April 2018.

The symposium titled Surveillance and response to infectious diseases and co-morbidities: An African and German perspective was attended by about 100 participants from Africa and Germany including senior researchers, policymakers and representatives from the private sector. Presentations and discussions revolved around antimicrobial resistance, One Health, co-morbidities of infectious diseases and the ‘Big Four’ infectious diseases in humans (HIV/AIDS, malaria, tuberculosis and hepatitis C).

Scientists from the human medical field dominated the symposium but in a panel discussion, the few animal health scientists present, including Kristina Roesel from the Animal and Human Health program of the International Livestock Research Institute, drew the audience’s attention to the importance of a One Health perspective on human disease as two thirds of human pathogens are of animal origin. Thomas Mettenleiter, member of the Leopoldina and president of the Friedrich-Loeffler-Institut (German Federal Research Institute for Animal Health), moderated the panel discussion.

The symposium was preceded by a one-day workshop on science advice jointly organized with the International Network for Government Science Advice–Africa and the International Council for Science Regional Office for Africa. Invited junior scientists got practical exposure to science advice including drafting communication strategies and role plays on infectious disease outbreak scenarios.

Article by Kristina Roesel

CGIAR Research Program on Livestock

Photo credit: Fernanda Dórea

Research shows that six out of 10 emerging human infectious diseases are zoonoses. Thirteen zoonotic diseases sicken over 2 billion people and they kill 2.2 million each year, mostly in developing countries. Poor people are more exposed to zoonoses because of their greater contact with animals, less hygienic environments, lack of knowledge on hazards, and lack of access to healthcare. 80% of the burden of these zoonotic diseases thus falls on people in low and middle income countries.

A workshop at last week’s Uppsala Health Summit zoomed in on zoonotic diseases in livestock and ways to mitigate risk behaviour associated with their emergence and spread. Critical roles and behaviours of people and institutions in preventing, detecting and responding to zoonotic livestock diseases were identified – as well as necessary changes and incentives so we are well-prepared for infections long before they reach people.

These zoonotic infections…

View original post 1,246 more words

Cattle being watered at the Ghibe River in southwestern Ethiopia

Cattle being watered at the Ghibe River in southwestern Ethiopia (photo credit: ILRI/Stevie Mann).

 

The successful eradication of rinderpest in 2011 offers vital lessons that can be applied in the ongoing quest to eradicate other deadly animal diseases.

In an opinion piece in SciDev.Net (16 Aug 2017), Delia Grace, co-leader of the Animal and Human Health program at the International Livestock Research Institute, shares her experiences as part of the global rinderpest eradication campaign.

Read the full article on SciDev.Net

Next Page »