ILRI


Poultry seller in a 'wet market' in Indonesia

A women sells live ducklings in a ‘wet market’ in Indonesia (photo credit: ILRI/Christine Jost).

On 29 January 2013, Canada’s International Development Research Centre (IDRC) and the International Livestock Research Institute (ILRI) organized a half-day workshop at the 2013 Prince Mahidol Award Conference entitled Cross-sectoral collaboration for health and sustainability: a new agenda for generating and assessing research impact in the face of complexity.

This pre-conference workshop convened nearly 60 international researchers, practitioners, policymakers and representatives from donor agencies and international organizations to address two contemporary challenges in global health research and practice:

  1. How do we measure and attribute the success and impact of integrated, transdisciplinary and cross-sectoral research and interventions? Further, how do we effectively and coherently communicate these successes to key global health policymakers?
  2. How can we integrate multiple lines of evidence and knowledge in order to achieve gains amongst a family of desired outcomes: the improvement of human and animal health, generation of impact for community members and policymakers, and the promotion of ecological and social sustainability?

The summary report of the workshop is now published, presenting the highlights and reflections which emerged from the workshop and its discussions.

“It is hoped that the key findings will enhance the proficiency of researchers to influence and impact regional and global health policy debates,” the authors say.

“Further, lessons from the workshop may inform priority setting for future research agendas in international One Health, EcoHealth and global health research.”

ILRI’s experiences in using EcoHealth approaches to better manage zoonoses in Southeast Asia took centre stage during a poster session at the 2013 Prince Mahidol Award Conference.

The conference was held in Bangkok, Thailand from 29 January to 2 February 2013.

Smallholder pig production in northern Viet Nam

Farmer Ma Thi Puong feeds her pigs on her farm near the northern town of Meo Vac, Vietnam. Intensification of livestock farming has been found to increase the risk of zoonotic disease transmission (photo credit: ILRI/Stevie Mann).

Modern farming practices, such as intensified livestock production, as well as environmental and biodiversity changes can be linked to the new wave of zoonotic diseases, according to a new study published in the 21 May 2013 edition of the Proceedings of the National Academy of Sciences (PNAS).

Human population growth and the expansion of agriculture to meet the ever-rising demand for food have been identified as the key drivers of recent outbreaks of emerging and re-emerging zoonotic diseases.

These human behavioural changes have led to encroachment of wildlife habitats, resulting in greater interactions between people, livestock and wildlife and increased chances of spillover of potential pathogens from wildlife to livestock and, consequently, people.

“Intensive livestock farming, especially of pigs and poultry, increases the risk of disease transmission due to increased population size and density,” the study reveals.

Environmental changes arising from settlement and agriculture, including land fragmentation, deforestation and replacement of natural vegetation with crops, alter the structure of wildlife population, giving rise to new environmental conditions that favour specific hosts, vectors and pathogens.

The study was carried out in form of a systematic review by a multidisciplinary team of researchers from the International Livestock Research Institute (ILRI) and the Royal Veterinary College, University of London.

The research team sought to analyze qualitatively scientific evidence on the effect of agricultural intensification and environmental change on the risk of zoonoses transmission at the interface of humans, livestock and wildlife.

While the study has identified a clear link between the threat of zoonotic disease and the wildlife-livestock interface, it does not adequately address the complex interactions between the environmental, social and biological drivers of pathogen emergence.

For this reason, there is need to carry out local interdisciplinary studies that can come up with locally relevant solutions to tackle the threat of emerging and re-emerging zoonoses, the authors conclude.

Delia Grace, veterinary epidemiologist and food safety expert at ILRI, is among the co-authors of the study. Grace also leads the agriculture-associated diseases theme of the CGIAR Research Program on Agriculture for Nutrition and Health.

Read the full-text article

Citation: Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, McKeever D, Mutua F, Young J, McDermott J and Pfeiffer DU. 2013. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 110(21): 8399-8404.

Capacity-Development-for-Wildlife-Health-Management The 2012 annual scientific meeting of the Wildlife Disease Association featured a workshop on capacity development in wildlife health management.

The workshop consisted of presentations, table-top exercises and general discussion among over 60 participants from all over the world.

The International Livestock Research Institute (ILRI) was represented by Purvi Mehta-Bhatt, regional representative for South Asia, who gave a keynote presentation on capacity development in One Health and EcoHealth.

“Capacity development is an important pathway to achieving sustainable development. Limited capacity continues to be one of the most prominent hindrances to implementing projects in developing countries,” said Mehta-Bhatt.

“It is important to identify and leverage upon the role that different international, regional and local organizations can play in building capacities.”

ILRI’s research on One Health and EcoHealth is one of the key research activities within the prevention and control of agriculture-associated diseases theme of the CGIAR Research Program on Agriculture for Nutrition and Health.

Access the workshop report

Citation: Leighton F A, Valeix S, Wall R, and Polachek L. 2012. Capacity development for wildlife health management in low and middle income Countries: A Workshop Work Book. Wildlife Disease Association, Lawrence, KS, USA.

On 3-4 September 2012 participants from five CGIAR centres met at the International Livestock Research Institute (ILRI) in Nairobi to share about their activities related to mycotoxin research and to plan how these different activities might work together within the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH) mycotoxin research portfolio.

Representatives attended from the International Maize and Wheat Improvement Center (CIMMYT), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the International Institute of Tropical Agriculture (IITA),  the International Food Policy Research Institute (IFPRI) and ILRI.

The meeting report is now published, highlighting the key issues, decisions and action points.

Download the meeting report.

Aflatoxin-contaminated groundnut kernels

Aflatoxin-contaminated groundnut kernels from Mozambique. The Partnership for Aflatoxin Control in Africa has identified five priority strategic areas for action towards control of aflatoxins in Africa (photo credit: IITA).

Regional and international experts in agriculture, health, research and trade have drawn up a plan of action for the control of aflatoxins in Africa, following a strategy development workshop organized by the Partnership for Aflatoxin Control in Africa held on 10-12 April 2013 in Dar es Salaam, Tanzania.

“Control of aflatoxins is needed to achieve greater agricultural development, food security and improve health, particularly in Africa where contamination is widespread and often acute,” said Yemi Akinbamijo, head of the Agriculture and Food Security Division of the African Union Commission.

The workshop participants identified five priority strategic thematic areas for action:

  • Research and technology for control of aflatoxins
  • Legislation, policies and standards in the management of aflatoxin in Africa
  • Growing commerce and trade while protecting lives from aflatoxins
  • Enhancing capacity building on aflatoxin management, control and regulatory processes to ensure reduced exposure
  • Public awareness, advocacy and communication

Aflatoxins are highly toxic metabolites produced by the mould Aspergillus flavus and known to cause suppression of the immune system, liver disease and death in both humans and animals.

Aspergillus can grow in a wide range of foods and feed and thrive under favourable growth conditions of high temperature and moisture content.

The Food and Agriculture Organization (FAO) estimates that 25% of the world’s food crops are affected by aflatoxins, with countries in the tropics and subtropics at most risk.

Aflatoxin contamination can occur before crops are harvested when temperatures are high, during harvest if wet conditions occur and after harvest if there is insect damage to the stored crop or if moisture levels are high during storage and transportation.

In Africa, aflatoxin contamination of cereals, groundnuts and dried fruits leads to an estimated annual loss to food exporters of 670 million US dollars.

Among the over 110 experts who attended the strategy development workshop were three scientists from the International Livestock Research Institute (ILRI) involved in food safety research as part of the agriculture-associated diseases component of the CGIAR Research Program in Agriculture for Nutrition and Health (A4NH).

Benoit Gnonlonfin and Jagger Harvey of the ILRI-Biosciences eastern and central Africa hub are involved in a collaborative project, Capacity and Action for Aflatoxin Reduction in Africa, aimed at establishing a regional mycotoxin analytical platform with state-of-the-art diagnostic technology that will enable better detection and control of aflatoxin contamination in maize in Kenya and Tanzania.

Delia Grace is a veterinary epidemiologist and food safety expert and leads of ILRI’s Food Safety and Zoonoses Program as well as the agriculture-associated diseases component of A4NH.

Grace is involved in the project Measuring and mitigating the risk of mycotoxins for poor milk and maize producers and consumers in Kenya (MyDairy), which aims at improving food safety through reducing the risk of mycotoxins within the feed-dairy chain in Kenya.

The key aspects of the MyDairy project are:

  • integrated risk and economic assessment of the Kenyan feed-dairy chain;
  • investigation of technologies and strategies to reduce mycotoxins risk in the feed-dairy chain; and
  • impact assessment of a package of post-harvest strategies for reducing aflatoxins in maize.

Erastus Kang’ethe, a meat and milk expert at the University of Nairobi, who also attended the workshop, is one of the partners in the MyDairy project.

Access the workshop documents and presentations

Delia Grace, food safety specialist at the International Livestock Research Institute (ILRI), is cited in this feature article on urban livestock farming and zoonoses in Dagoretti, Nairobi.

Research by Grace and colleagues found that peer pressure and targeted messages on hygienic livestock keeping work better to control the spread of cryptosporidiosis than banning the keeping of animals.

ILRI Clippings

Meat Store in Kawangware Slum

Butcher shop in a slum in Kawangare, Nairobi, Kenya (picture on Flickr by Brad Ruggles).

It’s not only people who are rapidly urbanizing in Africa: people migrating from rural areas are bringing their livelihoods with them, which in Africa largely means their cattle, goats, sheep, chickens and pigs. A scientific report from researchers based in Nairobi, Kenya, investigating the benefits and harms of livestock keeping in two of Africa’s most crowded and sprawling cities —Nairobi and Ibadan — recommends that people ‘keep on keeping cows’ but keep them more carefully so as to reduce the risk of diseases being transmitted from livestock to people.

Importantly, the study also finds that  peer pressure — not health codes — is the answer to more careful management of the growing livestock enterprises in Africa’s slums and urban centres.

The Atlantic, one of North America’s most popular and distinguished cultural and political magazines, explores this…

View original post 652 more words

ILRI graduate fellow Taishi Kayano collects milk samples from a Kenyan dairy farm

ILRI graduate fellow Taishi Kayano collects milk samples from a Kenyan dairy farm as part of a qualitative survey on aflatoxins in the dairy chain in Kenya. (photo credit: ILRI/Taishi Kayano).

In January 2013, an international, multidisciplinary team of five upcoming researchers undertook a scoping survey of aflatoxins in the feed-dairy chain in Kenya as part of activities of the project, “Measuring and mitigating the risk of mycotoxins in maize and dairy products for poor consumers in Kenya” (MyDairy project).

The team comprised Kenyan PhD students Anima Sirma and Daniel Senerwa, American intern Calvin Pohl, Japanese veterinary student Taishi Kayano and Kenyan postdoctoral scientist Teresa Kiama.

They visited nine districts and 27 villages in rural Kenya where they led participatory rapid appraisals on dairying and aflatoxins and held focus group discussions with women dairy farmers.

In addition, all the communities visited were given information and training on safe handling and storage of milk and animal feed.

The qualitative part of the survey collected data on the type of feeds, milk yield and the storage period for milk and feed, among other variables.

Samples of milk and feed were also collected for laboratory analysis to investigate the association between the condition of cattle and the prevalence of aflatoxin in milk.

The results of the qualitative survey are being analyzed but preliminary findings show that the surveyed farmers use a variety of feeding practices for their dairy cattle and most of the milk is marketed in the informal sector as raw, unprocessed milk.

Recalling his field research experience as an ILRI graduate fellow, Kayano had this to say:

“I visited farmers with livestock officers or chiefs in the districts. Without their help, I wouldn’t have been able to get meet the local farmers and collect the milk and feed samples.

“They also helped to identify the precise locations of the dairy farms; this was very useful as there are no detailed maps of dairy farms.

“The livestock officers also translated our questionnaires from English to Kiswahili which was a key step in acquiring the data needed for the study.

“An internship at ILRI is a really good opportunity for students who would like to work on a short-term basis in an international research institution and to experience doing research in a developing country context.”

Read more about the MyDairy project

Typical mixed crop-livestock farming of western Kenya

Typical mixed crop-livestock farming of western Kenya. Many smallholder farmers in western Kenya are taking advantage of the growing demand for pork to keep free-ranging pigs as a commercial enterprise (photo credit: ILRI/Pye-Smith).

Many people are familiar with the use of global positioning system (GPS) technology as a security measure to track the movement of vehicles, mobile phones and sophisticated high-tech gadgets and assets.

But researchers at the University of Edinburgh and the International Livestock Research Institute are using GPS technology to track the movement of a different kind of asset that, though not motorized or electronic, is nonetheless of great value to resource-poor farmers in rural western Kenya: free-ranging domestic pigs.

In western Kenya, as in many parts of the developing world, rural households keep pigs under extensive, low-input systems where the animals are left free to roam and scavenge food outside the homestead.

Such low capital investment production systems enable smallholder farmers to benefit from pig production by taking advantage of the growing demand for pork, especially in urban areas.

It is well known that irrespective of the production system under which they are kept, pigs can be the host of a variety of disease-causing microorganisms.

However, pigs that are left to roam freely and scavenge food have a much higher risk of picking up diseases and infections like the pork tapeworm and African swine fever and passing them on to other domestic and wild animals as well as to people.

Understanding the movement patterns of free-ranging pigs in a rural setting can help animal health researchers develop effective disease control policies for smallholder pig production systems, based on a better understanding of the patterns of disease transmission within populations of free range pigs.

The results of a year-long pig tracking study carried out in Busia, western Kenya between March 2011 and February 2012 are now available in the March 2013 issue of the open access journal BMC Veterinary Research.

The pigs were fitted with GPS collars that tracked their movements and recorded their location coordinates every 3 minutes for one week. The location data were then transmitted to a central GPS server for analysis. Blood samples were also collected from the pigs to check for infection with gastrointestinal parasites.

“This is the first study to use GPS technology to collect data on the home range of domestic pigs kept under a free range system and the data will give us new insights into the behaviour of free-ranging pigs in a resource-poor setting,” the authors say.

The study found that the free-ranging pigs spent almost half their time outside their homestead of origin, travelling an average of 4,340 metres in a 12 hour period.

This result shows that with respect to pathogen transmission, the village environment beyond the farm matters just as much as the environment on the farm itself.

In addition, the researchers found that free range domestic pigs spend a lot of energy while foraging and this reduced their potential for weight gain and economic benefit to their owners.

This is because the sale price is normally pegged on the live weight of the pigs: a heavier pig translates into more cash for the farmer.

“The movement data can also be combined with information on ration formulation and daily weight gain to provide farmers with advice on how to change their animal husbandry practices to improve the profitability of pig production,” the authors conclude.

Read the abstract here

Citation: Thomas LF, de Glanville WA, Cook EA and Fèvre EM. 2013. The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya. BMC Veterinary Research 9: 46. doi:10.1186/1746-6148-9-46

Find out more about the Zoonotic and Emerging Diseases Research Group which is led by co-author Eric Fèvre.

Mozambican smallholder farmer

Celeste Sitoe, a smallholder farmer in Lhate Village, Chokwe, Mozambique (photo credit: ILRI/Stevie Mann).

The research priorities and value chain master plan of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH) were among the topics discussed at an international conference on innovations and incentives in agricultural research for development, the proceedings of which have just been published online.

Delia Grace, who leads the food safety and zoonoses program at the International Livestock Research Institute (ILRI) and the agriculture-associated diseases component of A4NH, gave two presentations at the third annual Agricultural Research for Development conference which took place on 26-27 September 2012 at the Swedish University of Agricultural Sciences (SLU).

In addition to keynote addresses, the conference held parallel sessions that featured the work of several CGIAR Research Programs.

Grace’s first presentation highlighted the synergies between A4NH and the CGIAR Research Program on Livestock and Fish.

Research by the Livestock and Fish program adopts a ‘whole value chain’ approach and is targeted at selected animal-source food value chains with the aim of achieving impact at scale.

The A4NH value chain master plan is premised on four assumptions or hypotheses:

  • Nutrient-dense foods in basic diets can have important outcomes
  • Informal markets are most important and require risk- and incentive-based approaches
  • CGIAR research can work effectively at the demand side
  • CGIAR research has potential for consumer education and health

The second presentation focused on innovations and incentives in agricultural research for poor countries and highlighted two cases studies: an innovation that failed (community-based tsetse control in West Africa) and one that succeeded (training of informal sector milk traders in Kenya).

One of the key lessons from the case studies was that while innovations are the lever, incentives are central and value chain actors need to capture visible benefits.

Access the conference proceedings

About the Agricultural Research for Development conference
Agricultural Research for Development is the name of the annual multi/inter-disciplinary and multi-stakeholder conference on agriculture, livestock and forest research in an international development context.

It is organized by four networks: the Swedish Research Network – Sustainable Agriculture and Forestry for Development (Agri4D), the Swedish International Agricultural Network Initiative (SIANI), the Forest, Climate & Livelihood Research Network (Focali) and Future Agriculture.

Poultry seller in a 'wet market' in Indonesia

A woman sells live ducklings in a ‘wet market’ in Indonesia (photo credit: ILRI/Christine Jost).

On 10–11 January 2013, over 50 international experts from science, policy, the media and academia met at Sussex University for a workshop to discuss what recent controversies can teach us about possible future responses to pandemic influenza outbreaks.

The workshop, convened by the Economic & Social Research Council STEPS Centre and the Centre for Global Health Policy, examined in depth why controversies have emerged around pandemic flu, in order to inform future approaches.

Veterinary epidemiologist Jeff Mariner represented the International Livestock Research Institute (ILRI) at the workshop as an invited panellist speaking on experiences with participatory surveillance in control of highly pathogenic avian influenza (HPAI).

Mariner said that HPAI has largely settled down to become endemic in those countries with dense and complex poultry populations and faded out from countries that were not very well suited to sustained transmission.

“The HPAI control programs had little impact in changing the epidemiological course of evolution of the epidemic, and the response to HPAI to large extent ignored key lessons from previous successful disease control activities,” he observed.

“The emergency response approach led investments to have limited sustained impact as they did not address the fundamental institutional issues and the limited capacity of host-country services to absorb the large amounts of money allocated,” he added.

In conclusion, Mariner proposed that in the future, pandemic preparedness should focus on long-term capacity building rather than short-term emergency responses.

Access the workshop report here

« Previous PageNext Page »